Study of Binary Partition Tree Pruning Techniques for Polarimetric SAR Images
نویسنده
چکیده
This paper investigates several pruning techniques applied on Binary Partition Trees (BPTs) and their usefulness for low-level processing of PolSAR images. BPTs group pixels to form homogeneous regions, which are hierarchically structured by inclusion in a binary tree. They provide multiple resolutions of description and easy access to subsets of regions. Once constructed, BPTs can be used for a large number of applications. Many of these applications consist in populating the tree with a specific feature and in applying a graph-cut called pruning to extract a partition of the space. In this paper, different pruning examples involving the optimization of a global criterion are discussed and analyzed in the context of PolSAR images for segmentation. Initial experiments are also reported on the use of Minkowski norms in the definition of the optimization criterion.
منابع مشابه
Change Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images
The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...
متن کاملThe Extended Sub-look Analysis In Polarimetric SAR Data For Ship Detection
The monitoring of maritime areas with remote sensing is essential for security reasons and also for the conservation of environment. The synthetic aperture radar (SAR) can play an important role in this matter by considering the possibility of acquiring high-resolution images at nighttime and under cloud cover. Recently, the new approaches based on the sub-look analysis for preserving the infor...
متن کاملClassification of polarimetric radar images based on SVM and BGSA
Classification of land cover is one of the most important applications of radar polarimetry images. The purpose of image classification is to classify image pixels into different classes based on vector properties of the extractor. Radar imaging systems provide useful information about ground cover by using a wide range of electromagnetic waves to image the Earthchr('39')s surface. The purpose ...
متن کاملMicrowave Imaging Using SAR
Polarimetric Synthetic Aperture Radar (Pol.-SAR) allows us to implement the recognition and classification of radar targets. This article investigates the arrangement of scatterers by SAR data and proposes a new Look-up Table of Region (LTR). This look-up table is based on the combination of (entropy H/Anisotropy A) and (Anisotropy A/scattering mechanism α), which has not been reported up now. ...
متن کاملApplying Coherent and Incoherent Target Decomposition Techniques to Polarimetric SAR Data
Classification of polarimetric SAR images has become a very important topic after the availability of Polarimetric SAR images through different sensors like SIR-C, ALOS-PALSAR etc. In this paper we studied effect of different decomposition techniques on the classification accuracy for polarimetric SAR data. We applied different target decomposition techniques (both coherent and incoherent) on A...
متن کامل